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WHY MATHS? 
HOW MUCH MATHS SHOULD I DO FOR THE 

HSC OR AT UNIVERSITY? 
 
 You may not have a choice. What you really want to study may require a substantial 
amount of mathematics. Here are some of the areas of employment that need mathematics. I 
have ordered them roughly in decreasing order of the amount of mathematics they require. 
 
MATHEMATICS LECTURER 
 Of course, if you aspire to lecture mathematics at university, or do research into 
mathematics, you will clearly need to study a considerable amount of maths. You will need 
not just a university degree, majoring in mathematics – you will also need a PhD in maths, 
requiring three years, or more, of postgraduate study. 
 You should be aware that these days it’s very difficult to get a permanent full-time job 
in a university maths department. Typically you would need to some post-doctoral research 
on fixed-term contracts before you can be successful in getting a tenured position. Very often 
this takes until one is in one’s mid thirties, after having had a succession of three year 
contracts. 
 Sorry if this puts you off. You have not only got to be very good at mathematics, you 
also need a lot of imagination, you need to have the ability to be persistent and finally you 
need to be somewhat lucky. In my case I was somewhat good at mathematics, I have loads of 
imagination, I was persistent, but above all I was lucky. At the time I finished my PhD many 
new universities were springing up all around Australia. With no post-doctoral experience I 
applied for jobs at three universities and got offers from all three. In the current climate I 
wouldn’t stand a chance at even one. You can only hope that the government decides to fund 
some new universities in the future. 
 But don’t let me put you off. Mathematical research is an exciting occupation. You 
might think, as many do, that everything in mathematics was discovered a long time ago and 
that there is no further the need to do 
research in the subject. Nothing could be 
further from the truth. What you learn in 
high-school only brings you up to the 17th 
century. A university degree will contain 
very little before 1900. But Mathematics 
research has continued at an ever 
increasing pace since then. It’s just that 
you don’t get to hear about it. Once you 
enrol in a PhD you’ll have to find 
something that is entirely new and this 
will require you to learn all that’s known 
in a very narrow area. 
 The subject of mathematics continues to grow quickly in the 2020s. A number of 
years ago, before it went online, the publication Mathematical Reviews published a volume of 
brief abstracts of mathematical papers, containing entirely new material, every month. 
Typically it would describe a 20 to 50 page paper in just a paragraph or two. And yet it got to 
be the size of a small telephone book – every month!  
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 But don’t overlook the excitement of teaching mathematics at university. The talent 
of doing this well is often overlooked when it comes to promotion, but it is its own reward. 
Even though you may be teaching the same content year after year (because the new research 
that I talked about above might take fifty years or more before some of it reaches the 
university syllabus), the different students each year make it a refreshingly new experience 
each year. 
 With a first year course you might be lecturing to 500 students. Here you have to be 
somewhat of a showman to engage the interest of the students, pacing around in front of the 
theatre, using your hands, and sometimes shouting when you get to an exciting bit. 
 With a third year course it is much more intimate. With ten or twenty students you 
know each student by name and the lecture sometimes involves some discussion. Here there 
is the opportunity for students to ask questions and I really like it when I get a student who is 
prepared to ask a ‘dumb question’. 
 A ‘dumb question’ is one that the other students think shows the ignorance of that 
student, but when it gets answered they discover that they didn’t really understand the 
concept themselves – they only thought they did. Invariably the ‘dumb’ student ends up 
getting an A.  
 
 You may meet the terms Pure Mathematics and Applied Mathematics. Often they 
used to be studied in separate departments. Nowadays the terms have largely gone out of 
favour, but it’s still useful to know what they mean. 
 In Pure Mathematics there is no connection with the real world. The mathematics is 
studied with no eye on possible applications. If the universe were to disappear overnight, pure 
mathematics would still remain – that is if there were minds to think about it. 

It explores mathematical ideas purely for enjoyment, or to satisfy intellectual 
curiosity. It doesn’t care whether there are any practical uses for it. In fact, in years gone by, 
some mathematicians have even boasted that some areas, like the theory of prime numbers, 
have absolutely no practical applications. 
 But don’t get the idea that Pure Mathematics is of no earthly use. The crazy thing is 
that in many, many, cases an application has been found a hundred years or more after a 
discovery that was made just to satisfy mathematical curiosity. Somebody encounters a real 
world problem and lo, the tools for solving it have been sitting around for over a century. 

For example, digital cryptography is the part of computer science that seeks to encode 
passwords or bank account numbers or military secrets. It was developed only about fifty 
years ago but it used the theory of prime numbers, and pure mathematical theorems about 
them, that were proved centuries ago! 

Fourier Theory was developed in the nineteenth century as a purely intellectual 
exercise. Then a hundred years later along came Electronics and found Fourier Theory to be 
just what was needed. 

 
Applied Mathematics takes an area of the real world and creates a mathematical 

model for it – that is a series of equations that describes it. Then, using mathematical methods 
it predicts outcomes. When the area of the real world is the physical world there’s not a lot of 
difference between theoretical physics and applied mathematics. But mathematical models 
have been constructed in areas such as traffic congestion, geological forces, the weather, the 
economy, pandemics, and many more. I happen to be a Pure mathematician and so I will 
probably show my bias. I boast that only Pure Mathematics gets studied in Heaven!! 
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 You should be aware that in Australia there are virtually no openings for 
mathematicians outside of the universities apart from the CSIRO which employs a few 
applied mathematicians. 
 
ASTRONOMER 
 Astronomy and cosmology are mainly studied within physics departments in 

universities. But there are certain scientific 
organisations that employ astronomers. We’re lucky 
in Australia because we’re in the Southern 
Hemisphere and, with very few developed countries 
south of the equator there are more astronomers 
employed per 100,000 of population than in 
practically any other country. Astronomers usually 
need a major in mathematics at university in 
addition to a physics or astronomy degree. 
 
 

 
PHYSICIST 
 All areas of physics need a 
certain amount of mathematics. 
Experimental physicists perhaps don’t 
need a huge amount but theoretical 
physicists certainly do. Certain areas, 
such as Quantum Physics, Particle 
Physics and Relativity, require a 
considerable amount of rather 
advanced mathematics. 
 
 
STATISTICIAN 
 There are two types of statistician – one who collects and analyses data and one who 
could be described as a mathematical statistician. The first type doesn’t need a great amount 

of mathematics. But Mathematical Statistics is 
built firmly on mathematics. When I studied 
Mathematical Statistics at university, many 
years ago, we were not allowed to begin it 
until second year. We had to master first year 
Pure Mathematics first. 

The main areas of mathematics that 
Mathematical Statistics uses are Calculus, 
Matrices and something called Measure 
Theory. 
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ELECTRONICS ENGINEER 
 Electronic engineers need a lot of Mathematics. 
Areas that are fundamental to the theoretical aspects of 
Electronics are Complex Numbers, Calculus and 
Differential Equations. 
 
COMPUTER SCIENTIST 
 There are some branches of Computing Science that need very little mathematics and 
others that require a considerable amount. Relevant areas of mathematics are Algebra, 
Number Theory and Discrete Mathematics. 

 One of my sons did three years of university 
maths, along with his Computer Science. He has done 
very well as a top programmer and says that his 
mathematics was a complete waste of time because 
he’s never used anything he learnt in maths! I have 
said to him that he has benefitted from the disciplined 
logical thinking that he learnt in his mathematics. I’m 
sure it has greatly assisted him in being a very 
sophisticated programmer – but he doesn’t see it! 

I have heard from recruiters in IT businesses 
that for many jobs in the industry they would prefer to 
employ a mathematics graduate with a certain amount 

of computer science than a computer science graduate with a bit of mathematics. It is a fact 
that a mathematics graduate can pick up whatever computer science they need on their own, 
while it is very difficult for someone with only a little mathematics to learn more on their 
own. 
 
HIGH SCHOOL MATHS TEACHER 
 Someone who has 
completed the top level of maths at 
high school will know all they will 
need to teach. But if their 
mathematical training stops there 
they will make a pretty poor maths 
teacher. It is so important for a 
maths teacher to have seen a lot 
more mathematics than what 
they’re required to teach. 

One may enjoy high school 
mathematics but it’s hard to get 
passionate about it. It is only in 
university that one gets to 
appreciate the whole picture of 
what mathematics is all about and 
to be set on fire by the subject. What is needed to be a good high school maths teacher is a 
real love for the subject, which only develops once you have seen the more fascinating parts 
of it. 
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 FINANCIAL ANALYST 
 A lot of mathematics graduates end up 
employed as a financial analyst in banks. 
insurance companies or other financial 
institutions. This is because there are many more 
such jobs for mathematics graduates in these 
companies than in other parts of the economy. 
They use a small amount of what they learnt but 
more importantly the rigorous training they get 
by studying mathematics is important and valued. 
What they need to know about economics can be 
picked up easily on the job, though it doesn’t hurt 
to know a little bit as part of one’s degree. 
 
ACTUARY 
 There’s a misconception that actuaries stand at the top of the mathematics ladder. Not 
so! This belief has arisen because the HSC mark needed to do Actuarial Studies is much 
higher than for any other mathematics based degree. 
 Students doing Actuarial Studies at university are only required to do one semester of 
university mathematics. Now it is true that there’s a lot of mathematical in all actuarial 
courses but it is mostly high school mathematics, or just a little more. But they have to work 
that fairly basic mathematics very hard and by no means could these courses be described as 
being easy. 

But be warned – many students find actuarial studies boring. If the financial aspects 
fascinate you then you probably won’t be bored. But if you drift into actuarial studies simply 

because you’re good at mathematics then 
you may not like it. 
 You will learn very few interesting 
mathematical concepts by doing Actuarial 
Studies. Now I am not saying that nobody 
should study the subject. Many students 
do like it – and it does pay well. If the 
salary that you earn after graduation is 
important then by all means become an 
actuary. If you find out what actuaries do 
and find it fascinating then this is the 
degree for you. But if your motive for 
choosing Actuarial Studies is to explore 

mathematics to its uttermost depths, you will be disappointed. 
 
 Macquarie University, where I taught, was the first university in Australia to have an 
Actuarial Studies Program. This was great for the Mathematics Department in those days. 
Students with high maths marks were attracted to Macquarie for the Actuarial Studies and, 
although they did hardly any maths with us, we soon began to notice many disillusioned 
actuaries dropping out of Actuarial Studies and transferring to Mathematics. We got many 
excellent students this way. In more recent years the tendency has been to do a double degree 
– in Mathematics and Actuarial Studies. This gives the mathematically curious student the 
best of both worlds. They can graduate and get a job with a high salary and satisfy their 
mathematical curiosity as well. 
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ENGINEER 
 These days most of the mathematics that an engineer needs is done 
by software. A certain basic level, say with at least one year of 
mathematics, is useful so that you know what these packages are doing 
and when to apply them. 
 
ACCOUNTANT 

 Accountants spend their whole lives doing 
Mathematics, but all they do with them is basic 
arithmetic, and their spreadsheets do that for them. 
So accountants had all the mathematical tools they 
need when they left Primary School. But despite 
the reputation of being boring I have found 
accountants on the whole quite interesting. 
However if they have any mathematical curiosity 
they won’t get it from their employment. 

It is quite common for me, when out with a 
group of friends, to be asked to check the bill and tell everyone what they owe. After all, they 
say, I’m a mathematician. My reply is invariably to say that I’m not an accountant. 
Accountants deal with numbers, while most branches of Higher Mathematics do not. Open a 
text book in some area of advanced mathematics and you’ll hardly see any numbers. In many 
cases there are even very few equations too – just a lot of words with a few equations here 
and there. 
 

WHAT DO I NEED TO BE A GOOD 
MATHEMATICIAN? 

 
LOGICAL THINKING 
 For a start you need to be strong in logical thinking. This requires the discipline to 
follow through a chain of reasoning. The sort of logic that’s used in the courts – where 
evidence is piled upon evidence until it tips the scales – is not relevant. 
 Then you need imagination. At Macquarie University we would often get students 
with very high maths marks from school who find university beyond them. At school you can 
do very well by being shown a method and doing hundreds of examples. A computer can be 
programmed to do this. At university, especially at the higher levels, original thinking is 
called for – being able to solve a problem where you haven’t been shown the method, but 
which you can solve by piecing together facts that have been demonstrated in lectures. 
 
IMAGINATION 
 Advanced mathematics is not just a case of clever problem solving. New branches of 
mathematics are very abstract and frequently hard problems are solved by inventing entirely 
new concepts to solve them. 

The right way to solve a hard problem is to look at it in some new way so that it 
becomes an easy problem. Sometimes the path to the solution involves a detour into entirely 
different areas that seem to have nothing to do with the original problem. It requires flexible 
thinking to follow these detours. 
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 Mathematics is often confused with Science. But they are quite different in their 
fundamental nature. The basic technique for establishing truth in Science is the Experimental 
Method, though some truths can be deduced by mathematical reasoning from facts which 
have been ‘proved’ experimentally. In Mathematics there are really no fundamental facts. 
Everything is proved by pure logic, starting with certain assumptions which cannot be 

proved. 
 Mathematics only exists in the human 
mind. Some people might claim that it exists 
in the mind of God, but we won’t go into 
that. There’s a famous saying that God 
invented the integers and man invented all 
the rest. But you could say that humans 
invented all of mathematics. Or you could 
say that God is the great Mathematician and 
that we merely rediscover what he has 
ordained, but I won’t continue along these 
lines. 
 Mathematicians of old got hung up on 
whether certain mathematical entities really 
exist. When the square root of minus one was 
first contemplated it was called ‘imaginary’. 
Yet these imaginary numbers proved 

extremely useful in solving real world problems. So they were allowed to be used but of 
course ‘they don’t really exist’. The modern perspective is that if something doesn’t exist we 
invent it, provided such an invention doesn’t lead to a contradiction. 
 The square root of minus one doesn’t exist. Well, mathematicians said “let it exist” 
and they invented imaginary numbers and found them extremely useful. 
 Parallel lines don’t meet. Mathematicians said “let them meet” – at an imaginary point 
(or as they’re called an ideal point). In this way a new geometry was built called Projective 
Geometry. This is not just a piece of mathematical fantasy. Many theorems about ordinary 
Euclidean Geometry are much more easily proved using these ideal points. 
 
 One of my mantras is that mathematician are the great storytellers of the scientific 
world. Nothing that we talk about actually exists, except in our imagination. We talk about 
infinitely long lines, with no end points – and these lines have zero width. Where do you find 
such things in the real world? They don’t exist. We just made them up – using our 
imagination. 
 Have you ever seen a perfectly round circle? Or a point that has zero dimensions. All 
are useful fictions. Even numbers are just figments of our imaginations. You can’t find them 
anywhere in the real world. We just made them up. Numbers only live in the human mind. 
 Mathematicians can happily prove theorems about 17 dimensional space. But a 17-
dimensional world doesn’t exist. Who cares! We can invent it and it lives in our minds. We 
don’t attempt to visualise it, but that doesn’t stop us proving theorems about it. Pure 
mathematics can be understood by disembodied angels. 
 
 A disembodied angel has nothing to do with religion. It is purely an imaginative 
concept dreamt up by one of my colleagues when teaching a Geometry course. A 
disembodied angel is a hypothetical being that is highly intelligent but has no concept of the 
spatial world. 
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 Alan, my colleague, would send one of his students into 
another room with a walkie-talkie while another student went to 
the blackboard in the classroom – also with a walkie-talkie. 
Alan then asked the student at the board to describe a certain 
diagram to the disembodied angel in the other room. The 
disembodied angel had to pretend he or she had no concept of 
spatial concepts. To make it easy for you, who do have a 
concept of space, here is the diagram that was on the board. 
 

 
 

 
 

 
 “There are three points …” 
 “What’s a point?” the disembodied angel would ask. 
 There’s no way the student in the classroom could possibly describe a point to a 
disembodied angel. If you’ve never seen something resembling a point you could never know 
what it is. However one doesn’t really need to know the nature of a point to do abstract 
geometry. 
 “Well a point is a thing – never mind what it looks like. Do you know what ‘three’ 
means?” 
 “Of course. We call three things a ‘trinity’. So you’ve got three things, which you call 
points.” 
 “Then you’ve got this line.” 
 “What’s a line?” 
 “Well, it’s a different sort of thing.” 
 “Got it.” 
 “Now two of these points lie on this line, but the third one doesn’t.” 
 “I sort of understand – but what does it mean for a point to lie on the line?” 
 The student at the board starts to get frustrated. “Well, a point lies on the line if the 
line passes through the point.” 
 “Passes through?” 
 “Well just accept that there’s a relationship between points and lines called ‘lies on’.” 
 “Good, another undefined concept. So there are three points and a line with two points 
lying on the line and the third one not.” 
 “That’s it. Well in Euclidean Geometry there is a unique line passing through that 
third point …” 

“Is ‘passing through’ a new undefined relationship?” 
 “No, it’s really the same as ‘lying on’, only the other way round. A line passes 
through a point if the point lies on the line. Now in Euclidean Geometry there’s a unique line 
… do you understand what ‘unique’ means?” 
 “Of course, it means ‘one and only’ – like God is unique.” 
 “Good. Then there’s a unique line through that third point that’s parallel to the 
original line.” 
 “Parallel?” 
 “Two lines are parallel if there’s a constant distance between them ..” 

“Distance?” 
“Let me put it another way. Two lines are parallel if they never meet.” 
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“Oh I understand ‘meet’. When we angels meet we shake wings with one another.” 
“Not ‘meet’ in that sense exactly. Two lines are parallel if there is no point that lies on 

them both.” 
“Now you’re talking. I understand perfectly. You have points and lines as undefined 

entities and ‘lying on’ as an undefined relation between a point and a line. So you have two 
points lying on a line and a third point that doesn’t lie on this line. Then there’s a unique line 
that passes through that third point such that there’s no point lying on both lines.” 
 “At last!” 
 

WHO ARE THE THREE MOST INFLUENTIAL 
MATHEMATICIANS OF ALL TIME? 

 Einstein is often quoted as a great mathematician but he wasn’t 
one at all. He was certainly one of the greatest theoretical physicists but 
he didn’t discover anything new in mathematics. Mind you, he was no 
dunce when it came to advanced mathematics. He probably had a 
knowledge of mathematics comparable to a typical graduate student but, 
when the going got tough, he had mathematical colleagues who helped 
him out. But he would certainly make the top three theoretical 
physicists of all time. He had remarkable insight into physics and great 
imagination. 

 You may have heard of the Indian mathematician Ramunujan, the hero of the film 
The Man Who Knew Infinity. He, too, was certainly a great mathematician. But he didn’t 
change the nature of mathematics as a whole. 
 Notice that I didn’t say ‘the most famous’ because in my list you have probably only 
heard of two out of the three. My definition of ‘influential’ is to have changed the face of the 
whole of mathematics. Here are my three. 
 
EUCLID 
 Euclid may have developed what we call Euclidean Geometry by himself or it may 
have been a team of mathematicians who worked under his name. I include Euclid not just 
because he was the founder of Euclidean Geometry but because he introduced the idea of a 
proof. He wrote a series of books under the title Elements in 
which he begins with a set of axioms. These he considered as 
being intuitively obvious, which they certainly seem to be. 
One of these is the so-called Parallel Axiom which states that 
given two points on a line and a third point not on that line, 
there’s a unique line that passes through the third point and is 
parallel to the given line. You may remember the difficulty 
the student had in explaining this axiom to the disembodied 
angel. 

But it is not for having developed what we now call 
Euclidean Geometry, that I include him in my list. It is 
because he introduced the concept of proof in developing that 
Geometry. Up to then Geometry was only an experimental science. Pythagoras’ Theorem was 
known to be true because men had measured countless right-angled triangles and verified it. 
A physicist would have called it Pythagoras’ Law. But Euclid proved that it was true. The 
concept of proof has since pervaded throughout the whole of Mathematics. Euclid really 
changed the face of Mathematics forever. 
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NEWTON 
 If I was writing this in German I would have replaced Newton by Leibniz. In the 
seventeenth century both Isaac Newton and Gottfried Leibniz invented what is known as 
Calculus independently – Newton in England and Leibniz in Germany. Newton was 
primarily an astronomer and he invented Calculus , or the Theory of Fluxions as he termed it, 

purely to help him study the motions of the planets. Leibniz was 
what is called a polymath – he was interested in many things. He 
was a philosopher, a mathematician, a psychologist, a lawyer and an 
engineer – though not, it seems, in astronomy. Leibniz’s notation is 
the one that has been adopted since it’s more appropriate for 
phenomena that don’t involve motion. 
 More than half of what is taught, and probably half of 
mathematics research, is in the area of Calculus – or Analysis as it 
is called at the more advanced level. So Newton (and Leibniz) 
really changed the face of Mathematics. 

 
GALOIS 
 Have you ever heard of Évariste Galois? Most probably not. That’s probably because 
you don’t do any mathematics at school that’s associated with him. But, although he died in a 
duel at the age of 20, he left behind a legacy that has completely transformed the way we do 
mathematics today. 

He was born on 25th October 1811 in France. He 
got bored at school and often failed his exams because 
he believed that what he had to learn was stupid. Instead, 
in his teens, he read advanced mathematics on his own. 
He failed to get into the prestigious École Polytechnique 
and instead enrolled in the much inferior École Normale. 
 At this time there was a lot of student unrest in 
Paris with opposition to King Louis Phillipe. He was in 
and out of jail for his political protests and he wrote 
much of his mathematics there. 
 A famous incident took place in May 1831 when 
some rioters, with whom Galois was aligned, were 
acquitted. There was a banquet held in their honour and 
it included many illustrious men, such as Alexander 
Dumas, the author of The Three Musketeers. During the 
festivities, Galois jumped up on the table with a dagger 
crying out “death to Louis Phillipe”, followed by the words under his breath, “if he turn 
traitor”. These last words were to cover himself, but not many heard them. A riot broke out, 
and Dumas jumped out of the window so that he could hide the fact that he attended such a 
traitorous gathering! 
 Galois was arrested the next day and was sentenced to six months. During this time he 
worked furiously on his research. He was released in April 1832. On 30th May 1832 he was 
challenged to a duel. It was supposedly over a woman but there is some evidence that it was 
politically motivated. He was shot in the stomach and died of peritonitis the following day. 
Before his death he had submitted a paper containing his research to the French Academy but 
it was lost. Many years later someone found it and realised how ground-breaking were his 
discoveries. 
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 So what did he prove? His actual discovery has only somewhat minor interest. It is 
not for this that he makes it into my list of the top three. You will know from school that 
there’s a quadratic equation formula which computes the solutions from the coefficients using 
the operations of addition, subtraction, multiplication and division and the extraction of a 
square root. 
 In 1515 a similar, though more complicated, formula was discovered for the cubic 
(involving powers of x up to x3). Here the formula involved taking cube roots as well as 
square roots. In 1545 the quartic equation was solved in a similar way. So naturally the search 
was on to find a formula for the quintic, involving powers up to x5. But Galois proved that no 
such formula can possibly exist. 
 Now although mathematicians are primarily involved in solving problems, one of the 
things they do is to prove that certain problems have no solution. Such a proof will then have 
the effect of preventing mathematicians from wasting their time in trying to solve the 
problem. 

Of course that has never stopped the amateur mathematician from regarding this as a 
challenge. “So, they think it is impossible? I’ll show them.” Often they come up with what 
they consider is a solution and submit it to a mathematics department. They write back saying 
that there’s a flaw in the solution and the amateur mathematician thinks that it’s a conspiracy 
to protect the reputation of their colleague who claimed that it was impossible. But if a proof 
exists that something is impossible then no solution will ever be found. 
 However it’s not this theorem about the quintic that makes Galois stand out above 
other mathematicians. His uniqueness consists in the methods that he invented to prove it. He 
invented the concept of a mathematical group and he developed quite a bit of Group Theory. 
When I was at Macquarie University I used to teach two whole third year courses that were 
based on his work: Group Theory and Galois Theory. 
 But even that is not what makes him really influential. Subsequent mathematicians 
changed the way they developed Group Theory by starting with four axioms. These define an 
abstract group. Then the whole theory is developed by starting with just those four axioms. 
Unlike Euclidean Geometry which attempted to develop a single mathematical structure, 
starting with the axioms as ‘self-evident’, the axioms of Group Theory are far from self-
evident. They describe what is meant by a group and there’s a whole wide world of examples 
of groups of all shapes and sizes. Groups have been connected with such odd phenomena as 
mail sorting and the marriage laws of Australian aborigines. More serious applications are 
found in Theoretical Physics and Crystallography. 
 This approach to mathematics – setting up a set of axioms to describe a certain type of 
mathematical structure and then proving theorems for these structures from these axioms – is 
the way most mathematical areas are now developed. So, although it wasn’t Galois himself 
who set up these axioms, it was Galois’ concept of a group that led to this axiomatic 
approach. 

In teaching Galois Theory I have always had a lot of fun reminding my students, who 
are mostly about 20, that when he was their age he did this ground-breaking work! 
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WHAT DOES MATHEMATICS LOOK LIKE AT 
THE ADVANCED LEVEL? 

  
 At school, and even at university, a student gets a pretty skewed picture of the 
mathematical world. It’s just like someone who has lived all their lives in a small Australian 
country town and has a limited experience of the wonderful diversity of the world. 

At school you’re hear about Arithmetic, but hardly anything about Higher Arithmetic, 
or Number Theory as it is more usually called. You learn the basics of algebra, but nothing of 
Abstract Algebra. You learn of Euclidean Geometry, but nothing of non-Euclidean Geometry 
or Projective Geometry or Topology. You learn some Calculus, but not Higher Calculus 
which goes by the name of Analysis. Here is a very rough description of these and other 
areas. 

 
CALCULUS 
 The simplest way to explain it is to think about graphs. A graph represents one 
variable plotted against another. The height of the graph, above the x-axis, represents the 
value of one variable given a certain value of the other. Height is just one aspect of a graph. 
The other two are slope and area 
under the graph. These represent 
other aspects of the connection 
between the two variables. 

For example, if you were to 
plot the velocity, v, of a moving 
object against time, t, the slope would 
give you the acceleration at time t and 
the area under the graph, down to the 
t-axis, between time t1 and time t2, 
represents the distance travelled 
during this interval of time. There are many other situations where slope and area have very 
different interpretations. 
 If it is the graph of a mathematical function there are algebraic ways of calculating 
slope and area. Finding the slope for a given function is called differentiating the function 
and finding the area function is called integrating it. Obtaining a formula for the slope or the 
area certainly beats trying to draw tangents on an actual graph to estimate the slope, or 
counting squares to estimate the area under the curve. 

Calculus looks mysterious because of its strange notation. If we have a graph of y 

against x, the derivative of y (or slope function) with respect to x is written 
dy
dx . You have to 

blame Leibniz for this strange notation – but it really is much better than Newton’s. The 
integral, or area function would be written  ⌡⌠y dx . You can now open any book on Calculus 

and while you may not understand the details, you’ll recognise these notations, or variations 
of them, and you’ll be able to say “I know what these are – that’s the slope function and 
that’s the area function”. 



14 

 

DIFFERENTIAL EQUATIONS 
 This branch of Mathematics is really a part of Calculus but it is so important that it 
merits its own name in the Course Prospectus. Differential Equations are just equations that 
contain derivatives and solving the differential equation means finding a function that 
satisfies the equation. There are two branches: Ordinary Differential Equations and Partial 
Differential Equations, but I won’t confuse you by explaining the difference. 
 The area of Differential Equations is one of the most useful parts of Mathematics and 
there are so many applications that I haven’t space to list them. 
 
ANALYSIS 
 This is the name given to the deeper end of calculus. You probably don’t want to 
know any more at this stage of your life. 
 
ABSTRACT ALGEBRA 
 Algebraically you have lived your whole life, perhaps not in Woop Woop, but 
perhaps in Sydney. Sydney is a great and important city but there’s a lot more in the world 
than just Sydney. 
 The Arithmetic and Algebra that you learnt in school is about just one algebraic 
system – the system of numbers. In Kindergarten you learnt about whole numbers. In Primary 
School this was extended to include fractions. In High School you learn about decimal 
numbers and the number system had now grown to become what are called the Real 
Numbers. Later you might hear about Complex Numbers, which include the Real Numbers. 
It’s just one big algebraic system. 
 Abstract Algebra asks what other possible algebraic systems there are. Now 
admittedly the most important one is the system of Complex Numbers, which include the 
Real numbers that are so familiar to us. But there are others, some of which are also useful. 

The simplest type of algebraic system is the group – the system that Galois invented. 
There are other types but this will give you the flavour. 
 
 A group is any algebraic system where there’s a way of combining any two things in 
the group (we will refrain from calling them numbers – instead we’ll call them elements). 
We call the operating multiplying the two elements and the result is called their product. 

In order for such an algebraic system to be called a group four axioms or properties, 
have to hold. If x and y are two elements we write their product as xy, just as in ordinary 
algebra. It is important not to bother asking what these elements are. They could be numbers, 
or they could be quite different things altogether. It’s best to pretend that you’re a 
disembodied angel and regard them purely as undefined objects. Likewise multiplication 
might just mean multiplying numbers in the usual way – or it could be something completely 
different. It’s best to regard multiplication as an undefined operation. So we have a set of 
undefined things, called elements, and an undefined operation that we call multiplication. 
 The first axiom insists that xy must always be inside the group, the Closure Law. The 
second axiom says that x(yz) = (xy)z whenever x, y and z are elements of the group. This is 
called the Associative Law and you probably remember being told about it being a law for 
ordinary algebra. 

The third axiom says that there is a special element in the group which leaves every 
element unchanged when it multiplies that element. We write that special element by the 
familiar symbol 1, or sometimes I, and call it the identity of the group. But beware, it need 
not be the number one – it just behaves like it. In symbols we say that 1x = x and x1 = x for 
all elements x in the group. 
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The last axiom says that for every element x there’s an element, which we write as 
x −1, such that xx−1 = 1 and x−1x = 1. We use the familiar symbol x−1 by analogy with ordinary 
arithmetic but it usually doesn’t mean 1/x in the usual sense. 
 
 This last axiom prohibits the system of Real Numbers from being a group if 
multiplication is interpreted as normal multiplication of numbers, because 0−1 doesn’t exist. 
But if we exclude zero we do get a group. The product of two non-zero numbers is a non-zero 
number and the remaining three axioms clearly hold for multiplication of real numbers. 
 The system of non-zero integers, on the other hand, is not a group. Although 2−1 exists 
(we normally write it as ½) it is not an integer. 
 
 You will notice that we have omitted from the definition of a group the very familiar 
Commutative Law: xy = yx. That is we don’t insist that the Commutative Law holds. Indeed 
in many of the most interesting groups it doesn’t! So what is an example of such a group? 
 
 Take a square piece of cardboard and number the corners 1, 2, 3, 4 in clockwise order. 
Turn the square so that 1 and 2 are 
at the top and write the word 
START in the middle of the 
square. Now turn the square over 
and number them 4, 3, 2, 1 so that 
each corner has the same number 
on both sides. Of course these will 
now be 1, 2, 3, 4 in anti-clockwise 
order. 
 There are several 
operations that we can perform on this square that leave it occupying the same position in 
space, just with the corners being permuted in some way. You can rotate the square through 
90 degrees or 180 degrees or 270 degrees, or even 360 degrees. Of course rotating it through 
360 degrees is equivalent to a rotation through 0 degrees if you are just interested in the final 
positions of the corners. Then you can rotate the square through 180 degrees about any one of 
the four axes of symmetry: the horizontal axis, the vertical axis or either of the two diagonals. 
 The operation that we will consider as multiplication is the operation of doing one of 
these rotation followed by the same, or another, rotation. If R is the symbol we give to a 90 
degree clockwise rotation about the centre then R2 will denote a 180 degree rotation, R3 will 
denote a 270 degree clockwise rotation (or a 90 degree anti-clockwise rotation) and R4 will 
denote a 360 degree rotation. 

Clearly a 0 degree rotation before or after any rotation will have no effect, so this will 
play the role of the identity, which we normally write as 1, but here we will write it as I. And 
since the 360 degree rotation is the same as a 0 degree rotation from the point of view of the 
final positions of the corners, we can write the equation R4 = I. 
 Now let’s denote the operation of flipping the square through 180 degrees about the 
horizontal axis by the symbol F. It’s important to remember that these axes are fixed in space, 
not drawn on the square. So the horizontal axis will always be horizontal from your your 
perspective. 

Clearly F2 = I. Now, experiment with your cardboard square and convince yourself 
that RF = FR3. That is if you start each time with the word START visible and the right way 
up, the positions of the corners will be the same no matter whether you perform RF or FR3. 
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And clearly R3 is the inverse of R so we can write RF = FR−1. All the four group axioms hold 
so this is a group, but it is a non-commutative group. 
 If you experiment with your square you should be able to convince yourself that the 
‘flips’ about the other axes of symmetry are RF, R2F and R3F. So the eight elements of this 
group are I, R, R3, R3, RF, R2F and R3F. 
 
 One of the more elementary theorems of Group Theory is that if the number of 
elements is a prime, or the square of a prime the group must satisfy the Commutative Law. 
This gives you some of the flavour of Group Theory and hence a little bit of the flavour of 
Abstract Algebra. 
 
LINEAR ALGEBRA 
 The concrete version of Linear Algebra is the Theory of Matrices and Determinants. 
This is used a lot in Statistics and Engineering. A matrix is just a table of numbers. You can 
add and multiply matrices if the sizes are compatible (never mind what that means). To get 
some flavour of the subject let’s stick to 2 × 2 matrices (2 rows and 2 columns). To add a 
couple of 2 × 2 matrices you just add corresponding components. Multiplication is more 
complicated: 





a1 b1

a2 b2
  



c1 d1

c2 d2
 = 



a1c1 + b1d2   a1d1 + b1d2

a2c1 + b2c2   a2d1 + b2d2
 . 

Rather than remember this formula just examine the pattern. You run along a row of 
the first matrix and down a column of the second – multiplying and adding these products. 
 We’ve almost got a group here. It can be shown that this multiplication satisfies the 

Associative Law, and the identity is the matrix I = 



1 0

0 1  . The trouble is with inverses. 

Clearly 



0 0

0 0   has no inverse, but lots of other matrices fail to have inverses. 

 The determinant of 



a b

c d   is defined to be the number ad − bc. It can be proved that if 
the determinant is zero the matrix has no inverse, but if the determinant is non-zero then it 
does. These matrices are called invertible. It can be shown that the invertible 2 × 2 matrices 
form a group. And, if you practice multiplying random matrices you’ll see that it is a non-
commutative group. 
 This is a tiny glimpse of the more concrete end of matrices and determinants. Linear 
Algebra proper begins with a set of axioms for something called Vector Spaces. 
 
NUMBER THEORY 

This basically just deals with the integers, or whole numbers. But it focuses on the 
concept of divisibility – one number dividing exactly into another. Numbers which only have 
two positive divisors, 1 and themselves, are called prime numbers. Notice that this excludes 
the number 1 which only has one positive divisor. 

Number theory is largely about divisibility and prime numbers. It does include other 
things such as which numbers are the sum of two squares or what are the Pythagorean triples 
(whole numbers that can be the sides of a right-angled triangle). 

It used to be thought that this was the most useless part of Mathematics but these days 
it underlies computer cryptography. 
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GEOMETRY AND TOPOLOGY 
 Not a lot of research is carried out these days into Euclidean Geometry or Projective 
Geometry – perhaps a little more into non-Euclidean Geometry. The big area of research is 
Topology. More and more applications are being found for this the bendy and stretchy 
geometry called Topology. It’s a huge area, so let me tell you about just one small corner – 
the topology of surfaces. 

Topology is mostly about connectedness. If you make a teacup out of plasticine you 
can squeeze the cup part so that it becomes part of the handle and stretch out the handle, so 
that you can make it into a doughnut shape. So, in topology a teacup is the same as a 
doughnut. If you tried to do this with a ball of plasticine you could only make a doughnut by 
making a hole, or rolling it into a tube and joining the ends. In topology you’re not allowed to 
tear a hole, resulting in nearby points suddenly becoming far apart. Nor are you allowed to 
joint different parts so that some points which were far apart 
are suddenly brought very close. Well, you are allowed to do 
these things but you will end up with something that is 
topologically different. 

So a sphere, the technical name for a ball, is different 
to a torus, the technical name for a doughnut. But a teacup is 
the same as a doughnut. 

Doing this with actual plasticine would keep the 
volume constant, but in topology things are allowed to 
expand or contract and be considered not to have changed. 
Perhaps a better analogy is to think of balloons. An 
uninflated balloon is topologically the same as a disk, say the shape of a round piece of 
cardboard – just imagine stretching the balloon so that it lays flat and the neck of the balloon 
becomes the perimeter of the circle. You have to allow the plastic in the balloon to be 
infinitely stretchable! You can continue to stretch the flat circular piece of rubber so that it 
doubles in size. To a topologist it remains the same. 

Now cut a hole in the middle of this circle. Cutting changes things topologically. The 
shape that you have is usually called an annulus – but a topologist would call it a cylinder.  
You can see why, by imagining that you stretch this annulus so that the inside circle is pulled 
out and enlarged to the same size as the outside circle. Pull these circles apart and you have 
… a cylinder. Topologically a cylinder is the same as an annulus. 

Take a strip of paper. Topologically this is the same as a disk – a flat circle. You just 
have to stretch the strip sideways so that it becomes a square, and then stretch it at the corners 
so that the edge of the square becomes a circle. 

Now take a real strip of paper and take the ends and join them up. Joining up changes 
things topologically and now you have a different surface, namely a cylinder. It’s a pretty 
short cylinder if you stand it up on one of the circular edges but you can stretch it so that it 
looks taller and becomes like a tin can with both ends removed. 

But now take another strip of paper. Give one end a half twist and join the two ends 
together. Joining changes things topologically and 
what we have is different to a cylinder – it’s called a 
Möbius Band. You can see that it is different to the 
cylinder because a cylinder has an inside and an 
outside while the Möbius Band only has one side. A 
tiny insect on a Möbius Band can crawl over the 
whole surface while on a cylinder, assuming it can’t 
negotiate the edge, it has to stay on one side. 
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Now the discussion so far might not seem like mathematics – why there have hardly 
been any numbers! It’s not all like that. An advanced text on topology would start with a set 
of axioms which would cover more than just surfaces, and there would be formal proofs 
rather than excursions into one’s imagination. But let’s continue with this informal 
discussion. 

Take your Möbius Band. The edge is one continuous circle – well it’s not actually a 
real circle but it is, topologically. There aren’t two circles as in a cylinder. The edge of a 
Möbius Band is just a single closed loop. Now take a flexible circular disk made of stretchy 
rubber (do this in your imagination). That also has a single edge that is a closed loop. Can 
you stitch these two closed loops together. If you try you’ll find that it is impossible in 3-
dimensional space. But it can be done in 4-dimensional space, and what you would end up 
would be a Projective Plane. 

As I said there’s a lot more to Topology than just this fun little corner of the subject. 
But it should be enough to show you that some parts of Mathematics look very different to 
what you learn at school. 
 
KNOT THEORY 
 This is actually another fun part of Topology. If you take a piece of string and glue the 
ends together you’ll get a circle. Then you can scrunch it up and wind it around itself, but as 
long as you don’t cut it open it is still topologically a circle. But suppose, before you join the 
ends, you tie a knot and then join the ends. This is what Knot Theory studies. It has some 
applications into the study of DNA and the way the DNA gets knotted together. 
 Now one fundamental problem in Knot Theory is deciding when two knots are the 
same. If you can get from one to the other without cutting it open then topologically they are 
the same. If I were to give you two knots, that look quite different, you may be clever enough 
to manipulate one so that it looks the 
same as the other. Great! You will have 
proved that they are the same knot. 
 But what if you can’t make one 
look like the other? Does this prove that 
they are different? They may, indeed, be 
different knots. On the other hand it 
may be that they are the same but you 
haven’t been clever enough to get one to look like the other. 
 You can lay each knot flat and draw pictures of them, showing the unders and overs 
in the usual way at the crossings. The bit that goes under is drawn so that it appears to be 
broken. One thing you can learn to do in Knot Theory is to take such a diagram and do some 
arithmetic and come up with a number, called the Alexander Number. This number will 
always remain the same no matter how much you manipulate the knot. 

So if you work out the Alexander Number for each of the two knots that I give you, 
and if one is 17 and the other is 19, you will have proved that they are indeed different knots. 
If, on the other hand both knots come out as 17 this doesn’t prove that they are the same. It’s 
a one-way test. It may mean that you have to try harder with your manipulation, or use a 
better test. 
 A variation on the Alexander Number is the Alexander Group. One can do certain 
calculations on the pictures of a knot and come up with a group. Another variation produces a 
polynomial. These are called ‘invariants’. Different groups or different polynomials will 
prove that the knots are different. These invariants will often distinguish between knots that 
have the same Alexander Number. 
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GRAPH THEORY 
 Forget the graphs that you draw on graph paper. The graphs in Graph Theory are 
points and lines connecting certain points. The layout is not important and the lines can curl 
around and even cross over each other. As long 
as it is clear which points (we call them vertices) 
are joined to which. We call the joining lines 
edges. 
 Graphs are sometimes called networks 
and they can represent many different situations 
in the real world, such as traffic networks or 
relationships between people. Sometimes we add 
a direction to the edges, like one-way streets, and 
sometimes we attach distances to the edges which 
can represent actual distances but often 
something else. 
 One of the problems discussed in Graph 
Theory is the Travelling Salesman Problem, the 
problem of finding a path that visits all the vertices with the smallest total distance. Another 
is to investigate which graphs can be drawn on which surfaces in such a way the edges don’t 
cross. 
 In particular, one can consider the so-called complete graph Kn with n vertices each 
connected to each other (no arrows). What is the largest n such that Kn can be drawn on a 
given surface? 
 On a plane, a sphere, or a cylinder you can place 4 vertices and join each to each 
other, without any edges crossing – but no more than 4. On a Möbius Band the maximum 
number of vertices you can do this with is 6. On a torus the maximum is 7. 
 
 A closely related area is map colouring. On a sheet of paper, no matter what map you 
draw (real or imaginary) you can always colour the regions, using 4 colours or less, so that 
adjacent regions (sharing a common border) have different colours. 
 On a sphere, or a cylinder this number is still 4. But on a torus there are maps that 
need as many as 7 colours. But every map on a torus can be coloured with 7 colours. 
 
INFINITE SET THEORY 
 This is probably the weirdest branch of Mathematics. A set is just a collection of 
things. There doesn’t need to be anything in common with the things in the set, which we call 
its elements. In Alice in Wonderland the Walrus sings of shoes and ships and sealing wax and 
cabbages and kings. One can form a set from one or more of each of these items. 
 In mathematics we usually stick to sets of mathematical objects, such as numbers. We 
also allow the elements of sets to also be sets. One way to describe a set is to list the 
elements, such as {1, 17, 32}. This only works for finite sets, unless one can spot a pattern. 
So {2, 4, 6, 8, …} might suggest the set of all even positive numbers. For infinite sets we 
usually have to resort to describing a property that describes the elements. 
 So {2, 3, 5, …} might suggest the set of all positive prime numbers but with just a 
few elements you can’t be sure. Instead we would write {n | n is a positive prime number}. 
You would read this as the set of all n such that n is a positive prime number. Or you could 
include the definition of prime and write it as: 
{n | n is an integer and n>1 and n = ab for positive integers a, b with a ≤ b implies that a = 1} 
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 About a hundred years ago there was an attempt to put all of mathematics on a sound 
logical foundation. The German mathematician Gottlob Frege attempted this and he sent his 
manuscript to Bertrand Russell to proof read it, in case there were any minor errors. Russell 
found just one huge error that forced Frege to withdraw his work from publication. 
 Frege assumed that for every property there is a set. For every adjective there is a 
corresponding noun. If P is a property, and Px means that x has that property, then Frege 
assumed that he could always talk about {x| Px}. Russell came up with the famous Russell 
Paradox which showed that there are certain properties where this leads to a contradiction. 
 Russell said, “what about the property x ∉ x?” Here ∈ denotes ‘belongs to’, or is an 
element of’ and ∉ denotes ‘does not belong to’. If x was the set of all sets then clearly x ∈ x. 
The set of all sets is itself a set. But if x = {cabbage, king} then x ∉ x because the set x is 
neither a cabbage nor a king. 
 Now if S = {x | x ∉ x} Russell asked the question: which of these is true: 

S ∈ S or S ∉ S 
If S ∈ S then it has the property that defines S, that is S ∉ S. 
On the other hand if S ∉ S it has the property that defines S and so S is an element of S, that 
is S ∈ S. If S ∈ S is true then it is false, and if it is false then it is true – a contradiction! 
 This put mathematicians to work to fix this problem. One can form the set {x | Px} 
only for certain properties P. The mathematicians Zermelo and Fraenkel came up with a set 
of axioms, called the ZF axioms. They said that a set is an undefined object, with one 
undefined relation of membership between them, subject to these axioms. One doesn’t have 
to rely on one’s intuition as to what set membership means. 

A set could be an integer and x ∈ y might mean that x divides y; except that this 
interpretation wouldn’t satisfy all the axioms. 
 Based on the ZF axioms one can build up virtually the whole of mathematics in a 
rigorous and logical way. With this approach everything in mathematics is considered to be a 
set. The number 0 is defined to be the empty set { }, the set with no elements. It is allowed to 
be a set because of one of the ZF axioms. The ZF axioms permit us to consider {0} as a set 
and this we define to be the number 1. Continuing in this way the number 7 is defined to be: 
{0, 1, 2, 3, 4, 5, 6}. Again the ZF axioms allow this to be a set. 
 One can then define the arithmetic operations of addition and multiplication purely as 
set operations and again these are justified because of the ZF axioms. One can then prove the 
basic theorems of integer arithmetic in a formal and logical way. 
 The next thing is to define fractions, decimal numbers etc. as sets. This requires great 
ingenuity. From this one proves the basic theorems of Arithmetic. Points and lines in 2-
dimensional space can be defined as sets and the axioms of Euclidean Geometry can now be 
proved. Hence all the theorems of Euclidean Geometry will be proved in the usual way. 
Indeed the entire edifice of mathematics can be constructed on the basis of the ZF axioms. 
 You may object that numbers and points are not sets. They are if we define them to 
be. Numbers and points are just made up things. There is nothing to stop us thinking of them 
as sets as long as these sets behave in the usual way as numbers or points. 
  
 And we don’t ask whether the ZF axioms are true. We take them as a foundation in 
the same way as a religious creed. After all, you can’t prove anything from nothing. You 
have to start by making certain basic assumptions. The Christians believes that the statements 
in the creed sound reasonable and so they accept them in faith. The mathematician believes 
that the axioms of set theory sound reasonable so these are accepted in faith. Please never 
belittle a Christian for believing things they can’t prove. Mathematicians do it too. In fact 
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nobody can possibly prove everything they believe because all proofs have to start with some 
basic assumptions. 
 
 Now one problem is that the ZF axioms have never been proved to be consistent and, 
because of their fundamental nature, they probably never will. That is to say, it is not 
impossible for someone in the future to come up with a contradiction arising out of the ZF 
axioms. That won’t be a real disaster. Those who bother about the fundamentals will just 
modify the ZF axioms to avoid the problem while all the other mathematicians will just 
quietly go about their business. 
 
 One of the things one wants to do with sets is to count how many elements they 
contain. Of course for infinite sets we need infinite numbers – not just ‘infinity’. In the late 
nineteenth century Georg Cantor showed that some infinite sets are actually bigger than 
others. With infinite sets you don’t automatically make them bigger by throwing in extra 
elements. 

If F = {1, 2, 3, …} and G = {0, 1, 2, 3, …} you might think that F is smaller than G 
because G has one extra element, but in fact they have the same size. We just pair off 1 from 
F with 0 from G, and 2 with 1 and so on. There is clearly a one to one correspondence here. 

Cantor introduced the rather peculiar notation for the size of all the above sets: ℵ0. 
The symbol ℵ is the first letter of the Hebrew alphabet and the subscript 0 indicates that this 
is just the smallest infinite number. 

The number of fractions is ℵ0 because it is possible to write out a single infinite list 
that includes all fractions, both positive and negative. Clearly we can’t just list them in 
ascending order because, for example, there’s no next smallest fraction after 0. But when it 
comes to decimal numbers there’s a quantum leap. There are ℵ1 decimal numbers, and there 
are ℵ1 complex numbers. And ℵ1 is bigger than ℵ0. 

 
The question may occur to you “is ℵ1 the very next infinite number or is there an 

infinite number between them?” The statement that ℵ1 is the very next number after ℵ0 is 
called the Continuum Hypothesis. Is the Continuum Hypothesis true or false? The answer is 
that we don’t know. It’s not that the question is still open and one day in the future it will be 
answered. No, the matter is completely undecidable. 

I remember a student of mine saying, “what I like about mathematics is that you know 
where you stand – every statement is either true or false”.   

Well, I’m sorry. There’s a third category: undecidable. You see it has been proved 
that on the basis of the ZF axioms it is logically impossible to prove that the Continuum 
Hypothesis is true. It has also been proved that it is impossible to prove that it is false. The 
question can never be answered because such an answer is a logical impossibility. 
 

I happen to believe that it is true, on the grounds that if a specific example was ever 
found of an infinite number between ℵ0 and ℵ1 this would answer the question and so 
contradict the fact that such an answer is logically impossible. But this is not quite the same 
as proving it true. There could be such an intermediate number but we can’t get access to it. It 
clearly seems a convenient belief that the Continuum Hypothesis is true. But because we 
can’t prove it we can just add it to the ZF axioms. 

You may be getting the impression that Infinite Set Theory is really weird. I once 
wrote a book called Mathematics at the Edge of the Rational Universe. It is logically sound 
mathematics but it gets close to the point where logic breaks down. 
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There’s another famous undecidable statement in Infinite Set Theory. If I give you a 
number of boxes and show you that none of them is empty, could you select exactly one item 
from each box? Of course you could. But suppose there are infinitely many boxes and each 
one contains infinitely many items, could you still select one from each? 

I’m sure you’d say that, apart from the practical difficulty of doing it in finite time 
(which we ignore), it is theoretically possible. Well you can believe that if you wish. Or you 
can deny it if that takes your fancy. It has been proven to be undecidable – something else 
you can add to your mathematician’s creed if you wish. 

The statement that such a choice is always possible is therefore an axiom, called the 
Axiom of Choice. You are free to add it as an axiom if you wish. Along with many other 
mathematicians I choose to do so because it makes the statements of certain theorems simpler 
if you allow it. Other mathematicians don’t like it. 

I must warn you that one of the consequences of the Axiom of Choice seems 
intuitively unbelievable, though this falls short of a proof that it is wrong. Suppose you take a 
solid sphere with radius of 10cm. If we assume the Axiom of Choice it is theoretically 
possible to cut this 10cm radius sphere into a certain number of pieces and, like in a 3D 
jigsaw, reassemble them to make two solid spheres, each with a radius of 10cm! 

Wow! If we made the sphere out of gold this would be a great way to make one’s 
fortune! But I said ‘theoretically possible’. There is no way that one could do this in practice. 
A real solid sphere is made up of a finite number of atoms and there’s no way such a process 
could double the number of atoms. The spheres we are talking about are homogeneous 
mathematical spheres and the pieces we would cut them into would be clouds of points – not 
something that any cutting instrument could possibly achieve. These ‘pieces’ are so nebulous 
that the concept of volume just doesn’t apply. 

I have no difficulty in allowing such a non intuitive phenomenon to be theoretically 
possible so I accept the Axiom of Choice. It gets thrown into the bag of mathematical things I 
can’t prove but which I am happy to accept. Other mathematicians feel that they cannot 
accept it. It’s their choice and it will never be possible for anyone to decide who is right. 
 You may worry that if an aeronautical engineer assumes the Axiom of Choice when 
designing an aeroplane it may fall out of the sky. Let me assure you that for any practical 
application you would never need to use the Axiom of Choice. The only practical benefit I 
can see of assuming the Axiom of Choice is that a few theorems can be stated more simply. 
So we save a tiny bit of ink! It is purely for aesthetic reasons that it suits me to ‘believe’ in 
the Axiom of Choice. 
 
CATEGORY THEORY 
 This is a relatively recent branch of Mathematics, 
having only been around for about fifty years. Like Set 
Theory it attempts to be a foundation for the whole of 
Mathematics but it does it rather differently. It is currently a 
very active research area and has some applications in 
Computer Science. 
 


